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Motivation

 knowledge of the electron bunch structure Is extreme
Important for both linear collider and free electron
laser.

» electro-optical sampling (EOS) offers the possibildy t
obtain precise results on a realtime scale.

« challenge: synchronisation between TiSa-laser and,F
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Electro-optic Sampling

requirements:

Electro-Optical Sampling
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electro-optical effects in anisotropic crystals

e for a homogeneous medium:
D = epgeFE

o surfaces of constant energy are ellipsoids in D-space
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with 7 = € ~ the index ellipsoid can be rewritten
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Index ellipsoid

AY =[0,0,1]

find plane through the origin of the index ellipgperpendicular to
the direction of the propagating light ray

*The two axis of this intersecting ellipse are dguength to Qand
N;.

* These axes are parallel to the directions of thelacement vector of
the two independent plane waves that can propad@tg a direction s
In the crystal. Axel Winter, 2004




Pockels effect in Zink-Telluride

for strong electric fields, susceptibility becomes moaar
P=c(VE+xVE? + xPE3.)
this means for the impermeability tensor:

AE)=¢ I4+r- -E

For ZnTe (zincblende structure), only one independantgonent of r
remains, so the equation for the index ellipsoid becomes:

1
?(u% + u% + u%) + 2741 (Eiuouz + Esuzul + Ezujup) =1
0
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determinatio of the mair refractive
Indices

 Crystal cut parallel to (110)-plane

ecoordinate system<:=[ - ] and Y =

Sin «

_ _ —Ccosa/2
eincident vector: Eh ( cos /2 )

this means for the index ellipsoid:
Uu - 'F](Ea) cu =1

0 sin a cosa/v2
+ r41Eq sin o 0 — cosa/v?2
cosa/v/2 —cosa/v/2 0
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determinatio of the mair refractive
indices ||

« calculate eigenvalues of 1(E)
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* the main refractive indices are given byr: = oy

e consideringrs1 Eo < 1/n° and expanding the root:
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determinatio of the mair refractive
Indices Il

e TiSalaser beam is incident along thie-1, —1,0]/v/2  direction (one c
the eigenvectors of the system),ESplies in (110)-plane.
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Outside Schematic

soptical table ouside linac bunker with the fs-Laser
earea Is temperature stabilized to 24°

(™) [ a7 TiSa-Laser
Periscope

Camera
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Beam Transfer

e 15m beam transfer line
Into bunker with 2 lenses
to Image beam profile at
exit of laser on to crystal

e due to dispersion In
lenses: pulse length of

* due to good temperature § - = =
stabilisation neglegible ¥ o
short and long term drifts
of laser spot inside tunnel
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Electron Beam
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Polarization of Laser and CTR

Electron

)

Diode Detector

rf4 Wollaston
Plate Prism

sLaser and CTR are horizontally polarized
s|laser polarisation is slightly elliptical after crystal

elliptical part of laser polarisation is converted todadiptical polarisation by
guarter wave plate
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experimental procedure

scan interval of 12.5 ns with 1ps stepwidth @3.125mHgasurement
time of 1 hour!

solution: find coarse overlap between OTR and buncboujacy of
about 100ps) and scan with high accuracy around that spot
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Synchronisation Scheme

12bit DAC

phase-locked loop (Pl

f o= 81 MHZ

laser

fre = 500 MHz
fyn = 3.5 GHz

scanning done by
phase shift of the
3.5GHz local
oscillator (LO) with a
vector modulator
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Synchronisation |

ase Shifter
Vector Modulator HMC 495

: Ampilifier 28 dB

(AML24P2801)
Limiter @ 3.5 GHz U=15V Amplifier 48dB

(Macom CL1) (AML24L4801) \
499,652 MHz BPF@ 3.5 GHz /
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HCM175MS 8 ><

10dbm

output 11.6198 MHz O—

Amplifier 48dB Amplifier 28 dB
(AML241L4801) (AML24P2801)

Ot ——> >—

Puls odbm Peak 3.497564 GHz

«7th harmonic from linac RF generated through limiter afep

ephase shift through vector modulator

. ] . Axel Winter, 2004
edownmixecwith 43rdharmonic of lase



Timing

only every 7th laser pulse is at the same spot relatitbéd linac RF
(every 43rd RF cycle)

problem: linac trigger must be synchronized to laser

solution: downconverting of 81MHz to 11.65MHz (=8H%/7)
synchronising that to the 3.125 Hz Linac trigger

Axel Winter, 2004
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Synchronisation Accuracy

e openloop: 230mV rms for 45° phase shift
that Is 5.1mV per degree phase shift
at 3.5 GHz 1°=793fs, so 1mV per 155fs jitter

measured rms value: 420uV

accur acy of 65fsreached
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Measurement of Synchronisation
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spectrum shows dominant peaks at 50Hz (1.87fs); 3{hHZs) and 19 kHz (1.4fs)
Integration yields jitter of 65 fs
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EOS scans for different linac setting

spreliminary data !

escanning resolution: 396fs

ojitter through gun: 1ps

simprovements will be made
during next shutdown

emeasurements in good
agreement with expected
bunch length of ~6ps FWH
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summary and outlook

* synchronisation between laser and RF with resolt
of 200fs accomplished

 first EOS-signal seen in February 2004 in good
accordance with expected SLS bunch length

 further measurements with reduced jitter will be
conducted soon
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Thank you for your attention !!



