Operation and areelerator physics trends at the ESRF

Outline

The ESRF today
The roadmap for brilliance increase
Machine physics
Future plans

 Joint facility supported and shared by 18 European countries
 2002 budget: 72 Million Euros
 About 600 people working at ESRF
 About 3500 researchers / year

12 years after commissioning

12 years after commissioning (2)

31 ID + 13 BM beamlines

Scheduled shifts by scientific area (Feb-Jul 2002)

Operational statistics

Scheduled hours in User Service Mode

X-ray availability over the years

ESRF Filling modes

Filling modes at the ESRF in 2003

New time structure modes

Injection with front-ends open (1)

In use since February 2003

Improve thermal stability on beamlines

Injection with front-ends open (2)

 Technically simple but safety issue Demonstrate the impossibility of steering a beam from the booster into a beamline if a beam is already stored in the storage ring

> Integration of a dedicated current monitor in the machine personnel safety system

> Permanent monitoring of the radiation dose on each beamline

Operation

Same injection repetition rate

Opening of in-vacuum ID gaps to 8 mm to avoid demagnetisation

Gating signal provided to users

Upgrade by a factor 100 of the initial brilliance performance

Horizontal plane: $\varepsilon_x = 4$ nm

-diffraction

limit

10

- 5

electron beam emittance

photon beam emittance

-10

- -0- - -

23 24

26

32

35

A.Ropert@esrf.fr

69 ID segments installed in 2004

Spectral shimming

ESRF Insertion devices (2)

Gap reduction 20 -->15 -->11 --> 5mm

In-vacuum IDs

	Period	Length	Magneti	Min.	Operatio
	(mm)	(m)	С	Gap	n
			Structur	(mm)	
			e		
ID11	23	1.6	Hybrid	5	Jan 99
ID22	23	2	PPM	6	Jul 01
ID9	17	2	PPM	6	Jul 01
ID29	21	2	PPM	6	Dec 02
ID13	18	2	PPM	6	Jul 02
ID27	23	2	PPM	6	Jan 04
ID27	23	2	PPM	6	Jan 04
ID11	22	2	PPM	6	Jan 04

Beam current

Emittance reduction (1)

Equilibrium emittance determined by an equilibrium between 2 competing effects

 ✓ Quantum excitation when photons are emitted in the dipoles
 ✓ Damping by the RF which restores the energy lost by synchrotron radiation

$$\varepsilon_{x_0} = \frac{C_q \gamma^2}{J_x \rho_0} < H >_{mag}$$

with
$$H = \gamma_x \eta^2 + 2\alpha_x \eta \eta' + \beta_x {\eta'}^2$$

M

Emittance reduction (2)

Basic structure of one cell

Minimisation of H

Emittance reduction (3)

From 7nm (zero dispersion) to 4nm (distributed dispersion)

Emittance measurement (1)

X-ray pinhole camera

Emittance measurement (2)

Horizontal plane 2 pinholes at dispersive and non-dispersive locations $-- > \varepsilon_x + \sigma_F$

Vertical	p	a	ne
		10	0/

Design value: Early operation: 2000 routine value in USM 10 %, i.e. 0.7 nm 10 % measured 25 pm 10 pm 0.6 % 0.25 %

Coupling correction (1)

Use the measured coupled-orbit response

Find the most effective corrector positions and apply the model solution to the machine $\longrightarrow 0.3$ %

Coupling correction (3)

The lifetime is also an important figure of merit to quantify machine performance

 Reduction of integrated brilliance due to short lifetimes
 Non constant heat-load which is

detrimental to beamline stability

Even at 6 GeV, the Touschek contribution is dominating the multibunch lifetime due to the high bunch density

Strategy for increasing the lifetime (1)

Sextupole optimisation in order to enlarge the dynamic aperture of the perfect machine

Strategy for increasing the lifetime (2)

Correction of non-systematic resonances to minimise the detrimental effects of field errors on the dynamic aperture

Measurement of the vacuum chamber coupling impedance

> Restoration of machine periodicity

> Transverse beam dynamics studies

Impedance measurements

T. Perron, L. Farvacque

Motivation

Understand the vertical impedance of critical components (narrow gap vessels, in-vacuum IDs,...) in order to keep the total impedance as low as possible

Reduction of the straight sections beam vertical stayclear in in order to reduce ID gaps

Material	Internal aperture (mm)	External aperture (mm)	Length (m)		Number
SS	15	19	5		1
SS	11	15	5		8
SS + 50 μm Co	8	10	5	NEG	2
AI	11	15	5	NEG	2
AI	11	15	2	NEG	4
AI	8	10	5	NEG	8
A.Ropert@esrf.fr					

Vacuum chamber evolution

Lack of pumping Higher pressure profile along the chamber Higher Bremsstrahlung background in the experimental hutches

Installation of extruded Aluminium vessels Reduction of manufacturing costs Reduction of the excitation of the resistive wall impedance

5 mA

Impedance measurements:

Method

Initiated by L. Emery, G. Decker and J. Galayda at APS

Displace the beam vertically, using a static orbit deviation, at the place where one wants to measure the impedance

Kick determination

A.Ropert@esrf.fr

Impedance measurements: Method (2)

Long bump Straight section vacuum chamber Intrance bump Distributed impedance Localised impedance

Local measurements Global measurements

> Apply a series of orbit

oscillations probing the impedance all around the machine

Processing extracting an impedance value for each straight section

Impedance measurements: Results

β-function modulation

L. Farvacque

320 quadrupoles powered in 8 families 16 + 16 quadrupolar correctors generated by the additional coils of the sextupoles

Classical method

Correction of the closest quadrupolar resonances by moving the working point and optimising manually the correctors

The half-integer line is corrected in each plane

New method

> Response matrix measurement

> Fit of a set of gradient errors
restoring the matrix (SVD)

Computation of the corrector set minimising the modulation

> Application on the machine and iterations

β-function for for a second structure for the second structure for the

	н	V
No correction	22%	9%
Resonance correction	6%	6%
Best correction	3%	2.5%

β-function^Emodulation: Results (2)

Moderate enlargement of the on-momentum horizontal aperture

Lifetime evolution

Correction	100 mA (992 b)	200 mA (992 b)	40 mA (16 b)
Standard	96.4 h	53.7 h	13.5 h
Best	100.9 h	55.9 h	16.2 h

Motivation

- Understand the limitation of the horizontal aperture
- Improve the lifetime in time structure modes

Studies

- Improvement of the model
- Aperture measurements
- Analysis of losses

Experimental tools

- Horizontal and vertical scrapers
- Turn-by-turn BPM system + injection kicker + vertical shaker
- Beam loss detectors

Refinement of the model

Calibration of sextupoles

Modelling of focusing and coupling errors

Multipolar errors + quadrupole fringe fields

Transverse beam Aynamics studies: Limited horizontal aperture (1)

Reduced physical aperture

Horizontal: septum at 19 mm from axis

Vertical: ± 4 mm high, 5 m long ID vessels

Tracking results

Limited horizontal aperture (2)

A.Ropert@esrf.f

Method #1

 Lifetime recorded versus amplitude of an oscillation driven by permanently running the injection kicker Method #2 (similar to ALS) • Measurement of the relative change in beam current $\frac{I_n - I_{n-1}}{I_{n-1}}$ after a single kicker shot

Transverse beam⁴dynamics studies: Physical or dynamic aperture limitation ?

ESRF-SOLEIL collaboration

•Excite an oscillation with the injection kicker until the beam is lost

Closing a scraperDetuned sextupoles

Record the evolution of the turn-by-turn beam current and time resolved beam loss detectors

Transverse bean gdynamics studies: Understanding the dynamic aperture limitation

The abrupt beam loss at large kicker current corresponds to losses in the horizontal plane

Start a reflection on long-term improvements of the ESRF storage ring performances with

keeping untouched the existing tunnel and beamlines

Objective: increase the brilliance by at least one order of magnitude

Beam current:200 mA \implies 500 mAEmittance:4 nm \implies 1 nm

New vacuum system

Multibunch feedback presently developed possibly sufficient

 HOM damped cavities

 Superconducting cavities (SOLEIL, Cornell type)
 Room temperature cavity (EU project)

