Accelerator Physics Seminar, January 28, 2003

Noise Performance Studies at the HERA-*p* Ring

S. Ivanov and O. Lebedev

Attachment #88 (April 2002) to the Agreement between DESY, Hamburg and IHEP, Protvino

Contents

- 1 Preamble: Motivations
- 2 Strategy
- 3 Time Schedule
- 4 Principles of DA and Analysis
- 5 Two-Channel Differential Amplifier
- 6 Measurements of Noise in RF System
- 7 Overall Noise Behavior of RF Systems
- 8 Conclusions

1 Preamble: Motivations

Beam observations + coasting-beam halo effect in the HERA-*p*

ſ

Noises in RF system (or ripple in *B*-field) could be responsible for longitudinal beam degrade

Many various **PARAMETERS** are tied together simultaneously. To list a few:

Life-times

1. Transverse exponential

 $\tau_t \cong 100 \text{ hr}$

 $\tau_{\sigma^2} \cong 10 \text{ hr}$

- 2. Instantaneous initial σ_{ϕ} -doubling
- 3. Instantaneous initial emittance (\overline{J} -) doubling $\tau_{J2} \cong 5$ hr for $\overline{J} \propto \sigma_{\phi}^2$

To note:

Parameter $\tau_{J2} \propto \sigma_{\phi}^{2}(t=0)$

Above figures apply to injected bunch occupying ½ of RF bucket at foot of distribution

Asymptotic length of a bunch

FWHM = 1.8–1.9 ns @ t > 10-22 hr (i.e., @ $t \to \infty$)

Loss rate of bunched-core population

5-10 % away after 10 hr

SR of high-energy protons

9.5 eV/turn @ 920 GeV 6.0 eV/turn @ 820 GeV (over-voltage factor of about 10⁵)

Momentum acceptance

$$\Delta p/p_0 \cong \pm (1-5) \cdot 10^{-3}$$

Coasting-Beam halo

- Phase/frequency noise of RF system is, normally, the 1st to show itself up.
- The 208 MHz potential well is steeper (and more non-linear!) than that of 52 MHz.

These were the <u>motivations</u> to launch Attachment #88 to the IHEP-DESY Agreement, Re:

Noise Performance Studies at the HERA-p Ring

2 Strategy

Priority order:

208 MHz \rightarrow 52 MHz \rightarrow forced beam response \rightarrow *B*-field ripple

Goals of the study:

- 1. Detect the presence of noise,
- 2. Spot the noisy sub-system,
- 3. Reveal the nature of noise, and
- 4. Start elaborating adequate cures.

Boundary conditions:

- 1. Non-intervening diagnostics, in the sustained run-2002 of the machine.
- 2. Save time and investment cost \rightarrow use of equipment, components and signals already available in the HERA-*p* instrumentation.

<u>Underlying technique</u> — analog *I/Q* demodulation about the 208 & 52 MHz references. A double-purpose tool:

- 1. To measure noises in cavity voltages.
- 2. To diagnose forced beam response to noise at coupled-bunch mode m = 1, 2 and n = 0.

<u>Courtesy of E. Vogel</u> — head part of his tool for [fast] cavity and beam diagnostics system.

3 Time Schedule

Three series of measurements accomplished in run-2002 of the HERA-*p*.

First, June 2002

What is found:

- 1. Heavy stray fields in bld. 50/room 601 precluding straightforward diagnostics. Say, programmable filter KH-3901 by the Krohn-Hite Corp. failed to operate in the actual environment.
- 2. Technically, phase of the LO could not be locked to phase of an RF cavity.
- 3. Digital scope TEKTRONIX TDS 684A could not yield powerspectrum processing even for diagonal *II* & QQ spectra.

Decisions taken in the aftermath:

- 1. To manufacture a dedicated high-gain low-noise base-band ACcoupled shielded differential 2-channel amplifier.
- 2. To develop an off-line post-processing code with a capability of cross-correlation analysis and data rotation to the gap frame.

Then, September 2002

What is found and done:

- 1. Live test of subtraction (differential) technique with the purposebuilt amplifier (gain = 300, bandwidth = 5 Hz - 1.1 kHz).
- 2. In-the-field test of data post-processing procedure.
- 3. Unsettled close-to-DC behavior of the issued DC-coupled low-pass amplifiers at the final ends of *I/Q* demodulation units (gain 2–5, cut-off 2 kHz @–3 dB). It was by-passed. (Side effect shortening signal transport path unattended with the subtraction technique).
- 4. Attained resolution flat-bottom of power spectrum detection at about a few units of 10^{-13} 1²/Hz.
- 5. Better than expected noise conduct of 208 MHz cavities (A, B, C, and D).
- 6. Higher noise in 52 MHz cavities (A, B)? It was yet an uncertain outcome of measurements.

Decisions taken in the aftermath:

1. To settle the stuff for further studies, off-line @ IHEP.

And, finally, December 2002

What is found and done:

- 1. Lasting routine measurements in smooth operational conditions.
- 2. Priority order turned around. First, 52 then 208 MHz cavities.
- 3. Album compiled of representative data plots for each of 4+2 RF cavities installed.
- 4. Seems to have found the most challenging cavity, namely, the B 52 MHz.
- 5. Beam response measurements via resistive gap monitor signal in a 52 MHz band. Mostly, as the effect tracer @ coupled bunch mode m = 1 and n = 0.

4 Principles of DA and Analysis

4.1 I/Q Decomposition

Accelerating field above transition

 $-V_{RF} \sin(\omega_{RF}t)$ across an equivalent gap

I/Q rotating Cartesian basis:

	Gap frame	LO frame
In-phase	$-u_{l}(t)\cdot\sin(\omega_{RF}t)$	$-u_{l}(t)\cdot\sin(\omega_{RF}t-\phi)$
Quadrature	$-u_Q(t) \cdot \cos(\omega_{RF}t)$	$-u_Q(t) \cdot \cos(\omega_{RF}t - \phi)$

4.2 Spectral Power Densities

LO frame	Rotation by ϕ	Gap frame	
$(u_{I0}(t), u_{Q0}(t))$	\rightarrow	$(u_I(t), u_Q(t))$	
$\begin{pmatrix} P_{II0}(\omega) & P_{IQ0}(\omega) \\ P_{QI0}(\omega) & P_{QQ0}(\omega) \end{pmatrix}$	\rightarrow	$\begin{pmatrix} P_{II}(\omega) & P_{IQ}(\omega) \\ P_{QI}(\omega) & P_{QQ}(\omega) \end{pmatrix}$	

Symmetry properties

Practical conclusion: to diagnose the 4 real functions:

 $P_{II}(\omega), P_{QQ}(\omega), \operatorname{Re} P_{IQ}(\omega), [\operatorname{Im} P_{IQ}(\omega)] \text{ in } \omega \ge 0$

Rotation of Spectra from the LO to gap frames is

$$P_{II}(\omega) = P_{II0}(\omega)\cos^{2}\phi + \operatorname{Re} P_{IQ0}(\omega)\sin 2\phi + P_{QQ0}\sin^{2}\phi,$$

$$P_{QQ}(\omega) = P_{QQ0}(\omega)\cos^{2}\phi - \operatorname{Re} P_{IQ0}(\omega)\sin 2\phi + P_{II0}\sin^{2}\phi,$$

$$\operatorname{Re} P_{IQ}(\omega) = \operatorname{Re} P_{IQ0}(\omega)\cos 2\phi - \frac{1}{2}(P_{II0}(\omega) - P_{QQ0}(\omega))\sin 2\phi,$$

$$\operatorname{Im} P_{IQ}(\omega) = \operatorname{Im} P_{IQ0}(\omega).$$

Consequences:

- 1. Sum $P_{ll}(\omega) + P_{QQ}(\omega)$, Im $P_{lQ}(\omega)$ and Im $P_{Ql}(\omega)$ are invariants of rotation.
- 2. $Im P_{IQ}(\omega)$ and $Im P_{QI}(\omega)$ are stand-alone functions having no effect on $P_{II}(\omega)$, $P_{QQ}(\omega)$ or $Re P_{IQ}(\omega)$.

Narrow-banded (*n* = 0) functions $P_{IQ}(\omega)$ and $P_{QI}(\omega)$ (about the gap frame) would bring about a **trivial** contribution to D(J) in a well $U(\phi) = U(-\phi)$

$$D(J) = \frac{1}{2} \left(\frac{\Omega_0^2}{V_{RF}} \right)^2 \sum_{a,b} \sum_{n,m=-\infty}^{\infty} P_{ab} (n\omega_0 + m\Omega_s(J)) \cdot V_{mn}^{(a)}(J) V_{mn}^{(b)*}(J)$$
$$V_{m0}^{(a)}(J) \neq \begin{cases} 0 & \text{for } m = \text{even } \& a = I, \\ 0 & \text{for } m = \text{odd } \& a = Q \end{cases} \text{ and } = 0 \text{ otherwise}$$

3. The non-diagonal spectra $P_{IQ}(\omega)$, $P_{QI}(\omega)$ residual in the gap frame exert no systematic effect on the beam diffusion by themselves

Practical conclusion: to diagnose the 3 real functions:

$$P_{II}(\omega), P_{QQ}(\omega), \operatorname{Re} P_{IQ}(\omega)$$
 in $\omega \ge 0$

4.3 Noises via 208 or 52 MHz RF systems

Beam bunching — via 208 MHz (mostly).

I/Q noise about 208 MHz and/or 52 MHz RF carriers. Which and where is more dangerous?

Weight functions effective in D(J):

Much a poorer non-linear content in case of $h'/h = \frac{1}{4}$.

The 52 MHz RF sub-harmonic is highly effective in driving the dipole oscillations in an entire range of $J \le J_S$. Effect increases towards outskirts of a bunch.

Practical conclusion: Noise $P_{QQ}(\omega)$ of the 52 MHz RF system in the dipole side band ($m = \pm 1$) of synchrotron oscillations is much more hazardous inherently than its 208 MHz counterpart. **More attention to 52** MHz RF system!

4.4 Discrete Fourier Transforms

$$U_a(\omega,T) = \int_{-T/2}^{T/2} u_a(t) \exp(i\omega t) dt$$

Clipping through rectangular-window

$$P_{ab}(\omega_j) = \frac{1}{T} \langle U_a(\omega_j, T) \cdot U_b^*(\omega_j, T) \rangle$$

@ T >> correlation time of noise

Data record parameters, actual data acquisition

Record length, T	1	S
Time increment, Δt	2·10 ⁻⁴	S
Sampling rate, <i>R</i>	5000	samples/s
Frequency resolution, $\Delta \omega/2\pi$	1	Hz
Nyquist frequency, $\omega_{Nyq}/2\pi$	2.5	kHz
Observation frequency span	0–250	Hz
Suppression of under-sampled signals towards the monitored 0–250 Hz base-band under a white-		
noise input	< -10	dB
Size of a record file in the TDS MathCAD format	about 40	kbytes
Dead time between subsequent acquisitions	60–70	S
Number of $I \& Q$ samples acquired, $S + S$	25 + 25	per a session

10 min of CPU-time consumption/per cavity on P3, 1 GHz

Data acquisition control:

Digital scope TEKTRONIX TDS 684A yields

$$M_{a}(\omega_{j}) = \frac{1}{T} \left\langle \left| U_{a}(\omega_{j}, T) \right\rangle \right\rangle = \frac{1}{T} \left\langle \sqrt{U_{a}(\omega_{j}, T) \cdot U_{a}^{*}(\omega_{j}, T)} \right\rangle$$

(300-sweep average with the built-in mathematics)

Control of magnitudes and frequency-domain conduct + consistency of data records

5 Two-Channel Differential Amplifier

5.1 What for?

2 channels — cross-correlation analysis of *I*/Q signals
 2 inputs per channel — the direct and inverted (differential) ones
 The subtraction (differential) technique

Transfer function of a channel

$$G(\omega) = \pm K \frac{-i\omega}{\omega_L - i\omega} \cdot \frac{\omega_H}{\omega_H - i\omega}$$

The simplest cascade of the passive first-order differentiating and integrating circuits to minimize inherent noise.

Technical	specifications
recimical	specifications

	•		
Gain, K (@ RLoad = 1 MOh	m) 300		
Lower cut-off frequency, $\omega_L/2\pi$	5	Hz	
Higher cut-off frequency $\omega_H/2\pi$: 1.1	kHz	
Suppression of in-phase signa	ls		
@ 20) Hz –70	dB	
@ 1	kHz –80	dB	
Input resistance	20	kOhm	
Output resistance	50	Ohm	
Long-term drift of DC off-set at output		mV	
AC spurious voltage, peak-to-peak			
@ 0	utput < ±3	mV	
redu	ced to the input node $< \pm 10$	μV	

5.2 Performance Data Measurements

Amplitude-frequency characteristic of the differential amplifier

Calibration with the 1 KHz meander

Scatter spot of spurious AC voltages at exit (25 s long observation)

Spot size at 1σ is

 ± 0.90 mV (*I*, channel 1) and ± 0.75 mV (Q, channel 2)

Since gain *K* = 300, the value of the self-noise reduced to the entry node is $\pm(2.5-3.0) \mu V$ at 1σ .

$$P/V_{RF}^{2} \cong (1-1.5) \cdot 10^{-10} \frac{V^{2}}{Hz} \cdot \frac{1}{(300)^{2}} \cdot \frac{1}{(70 \text{ mV})^{2}} \cong (2-3) \cdot 10^{-13} \frac{1^{2}}{Hz}$$
$$A/V_{RF} \cong \left[\frac{4}{T}(0.02-1) \cdot 10^{-7} \frac{V^{2}}{Hz} \cdot \frac{1}{(300)^{2}} \cdot \frac{1}{(70 \text{ mV})^{2}}\right]^{1/2} \cong (0.4-3) \cdot 10^{-5}$$

6 Measurements of Noise in RF System

6.1 Generalities

Block diagram of the measuring circuit (208 and/or 52 MHz RF systems)

The TDS 684A scope was, basically, employed as a two-channel 8-bit ADC with a capability of converting data records into the MathCad format.

Parameters and a number of the data records must:

- 1. comply with the higher cut-off in the amplifier,
- 2. conform to the TDS performance,
- 3. produce files of a reasonable size,
- 4. be sufficient to accomplish a reasonable statistical averaging,
- 5. contain a whole number of 1/50 Hz in record length, and
- 6. be manageable via PC-based post-processing under a moderate CPU-time consumption.

6.2 Example: cavity A, 208 MHz

As an example, in details ...

Averaged amplitude of DFT, calculated and directly acquired via the TDS. Cavity A 208 MHz, the LO frame

300 samples by TDS versus 25 samples recorded and processed

Acquired spectral power densities against resolution threshold (the lower curve). Cavity A 208 MHz, the LO frame

Cross-correlation function of noise. Cavity A 208 MHz, the LO frame

Scatter plot of spurious AC voltages in channels I, Q of the LO frame

Cross-correlation function

$$\rho_{IQ}(\omega) = \frac{\operatorname{Re}(P_{IQ}(\omega))}{\sqrt{P_{II}(\omega)P_{QQ}(\omega)}}$$

Further off-line signal processing comprises:

- 1. Normalization by DC-coupled readout magnitude $(V_{l0}^2 + V_{Q0}^2)$ to reduce the spectra to fractional voltage deviations in [1²/Hz].
- 2. Rotation by $\phi = \operatorname{atan}(V_{Q0}/V_{l0})$ to move from the LO to gap frame.
- 3. Multiplication by $1/|G(\omega)|^2$ to correct for the amplitude-frequency distortion caused by the acquisition channel itself.

These options are not available in standard built-in mathematics of any scope!

The final outcome for cavity A 208 MHz:

Cavity A 208 MHz, the gap frame

7 Overall Noise Behavior of RF Systems

8 Conclusions

Diagnostic Equipment

- 1. Use of the purpose-built low-noise base-band amplifiers to follow immediately the down-converting multipliers in the *I*/*Q* modules.
- 2. Shielding against stray electro-magnetic fields.
- 3. Use of the subtraction (differential) technique.

Noise Measuring Capability

- 4. The resolution base-line threshold constitutes a few units of 10^{-13} 1^2 /Hz.
- 5. Alteration of noise behaviour in response to resetting operational parameters of an RF cavity. (A future diagnostic tool for HERA-*p* control system?).
- 6. In a whole, beam-response observations comply with noise the diagnosed in 208 and 52 MHz RF systems.

Overall Noise Performance of the RF System

- 7. Level of noises at 208 MHz is lower than it has been expected for. **The 208 MHz RF system shows a satisfactory noise conduct.**
- 8. Continuous stretch of noise at 52 MHz is noticeably higher.
- 9. A significant presence of discrete frequency lines in the noise spectra.
- 10. Amplitude (or *I*) and phase (or *Q*) noises rotated back to the gap frame usually retain a strong residual cross-correlation.
- 11. The worst noise performance is proper to cavity B 52 MHz in the lower-frequency band of 10–40 Hz. The noise spectrum has a pronounced resonant shape.
- 12. The nature of such a noise is not comprehensible at the moment. Further studies are requested.