Operational experience with the Sub-Picosecond Particle Source Part II

K. Bane, F.-J. Decker, P. Emma, K. Hacker, L. Hendrickson, C. L. O'Connell,
P. Krejcik, H. Schlarb*, H. Smith, F. Stulle*, M. Stanek,
SLAC, Stanford, CA 94025, USA

- Project overview
- · Measurements of the bunch length
- Wake fields studies
- CSR measurements
- Bunch length measurements FFTB

12/08/2003

Repetition rate 10 Hz/1 Hz

12/08/2003

H. Schlarb, DESY, Hamburg

Measurements in FFTB Beam Line

- Wake loss scan had to adapted to FFTB operation
- Opportunity to measure the energy profile more accurate
- Problem: for ultra-short bunches bunch length diagnostics more difficult (even not available)
 ⇒ Electro-Optic Sampling experiment in preparation
 ⇒ Use THz detector to optimize bunch length

Measured and Predicted Energy Spread of a Compressed Bunch

Detection of Far-Infrared Radiation Emitted at a Foil

12/08/2003

H. Schlarb, DESY, Hamburg

THz Detection and OTR Layout

•Also used to adjust timing of EOS experiment

Photodiode for EOS

12/08/2003

Realtime bunch length optimization

11-JUN-03 11:51:43

Next, try dither feedback control

H. Schlarb, DESY, Hamburg

Dither Feedback Control of Bunch Length Minimization

12/08/2003

H. Schlarb, DESY, Hamburg

Complex dielectric function:

$\epsilon(\overline{\nu})$	=	$\Delta \epsilon + \frac{S_0 \overline{\nu}_0^2}{\overline{\nu}_0^2 - \overline{\nu}^2 - i\overline{\nu}\Gamma_0} = \hat{n}^2 = (n + i\kappa)^2$
α	=	$4\pi\kappa\overline{\nu}$ and $\Delta\epsilon = \epsilon_{dc}$

 \Rightarrow nearly no transmission of the H. Schlarb, DESY, Hamb@TR above 2.5 THz

Absorption in the sapphire

12/08/2003

Water absorption after 80 cm FIR transport

Pyroelectric-sensor:

- FIR heats LiTaO₃ crystal
- Dielectric polarization current
- is measured

Model of detector predict:

$$\frac{P_i - P_r}{P_i} = 1 - R(\omega) = 1 - |r(\omega)|^2$$

$$\omega) = \frac{\left(e^{+ik_{x,c}d} - e^{-ik_{x,c}d}\right) - (n+i\kappa)\left(e^{+ik_{x,c}d} + e^{-ik_{x,c}d}\right)}{\left(e^{+ik_{x,c}d} - e^{-ik_{x,c}d}\right) + (n+i\kappa)\left(e^{+ik_{x,c}d} + e^{-ik_{x,c}d}\right)}$$

+ material properties of LiTaO₃ crystal with two lattice oscillator model fitted

Response function of the pyro-electric detector (P1-45 Molectron)

Expected frequency response function for the SPPS-FFTB setup:

H. Schlarb, DESY, Hamburg

 $z [\mu m]$

12/08/2003

H. Schlarb, DESY, Hamburg

Total radiated energy

12/08/2003

Simulation and measured pyroelectric signal

H. Schlarb, DESY, Hamburg

Improved version of a compression monitor

Transmission through crystalline quartz

- try air or nitrogen atmosphere
- z-cut quartz window (2 mm thickness)
- band pass filters i.e. grids, windows

H. Schlarb, DESY, Hamburg

Electro Optic Bunch Length Measurement

• Pockels effect: E, of e-bunch rotates laser polarization

Electro Optic Bunch Length Measurement

• *Pockels effect: E_r of e⁻-bunch rotates laser polarization*

Laser beam incidence with an angle

- \Rightarrow spatial-time correlation
- \Rightarrow small fraction of laser is modulated
- \Rightarrow readout with line camera expected resolution < 100 fs

(limited by laser pulse duration)

Spatial-temporal correlation for EO

Spectral-temporal correlation for EO

H. Schlarb, DESY, Hamburg

Electric field distortion caused by wake fields

Electric field distortion caused by wake fields

H. Schlarb, DESY, Hamburg

SPPS Undulator

X-ray beam line

11111111111111

SPPS x-ray properties

	Calculated	Measured	
Pulse length	80 fs	<< 1 ps	FWHM
Peak Brightness	2x10 ²⁴	-	Photons/s/mm ² /mrad ² /0.1%BW
Photons/pulse	107	2 x10 ⁷	
Source size	160 x 350	-	µm FWHM
Divergence	15 x 16	-	µrad FWHM (undulator fundamental)
Beam size in hutch (95 m)	1.5 x 1.6	~ 2 x 2	mm FWHM
Repetition rate	10	10	Hz
Average flux	108	2 x10 ⁸	Photons/s

Summary

- No major difficulties during commissioning LLBC and FFTB beam line
- SPPS operation is compatible with PEP II operation
- X-ray beam line has been commissioned successfully, experiment have started already
- Deflecting cavity operation has been improved and extended toward measurements in the 50 um range
- Energy loss due to wake fields in good agreement to theory for design setting, but disagree for other machine operation (not yet understood)
- Method to optimize bunch length in Linac and the FFTB have been established